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ABSTRACT

Background Osteoclasts play a critical role in bone resorption under basal conditions, but they also contribute
to pathological bone loss during diseases including postmenopausal osteoporosis. Phospholipase Cc2 (PLCc2) is
an important signalling molecule in diverse haematopoietic lineages. Here, we tested the role of PLCc2 in basal
and ovariectomy-induced bone resorption, as well as in in vitro osteoclast cultures using PLCc2-deficient
(PLCc2) ⁄ )) mice.

Materials and methods The trabecular architecture of long bone metaphyses was tested by micro-CT and
histomorphometric analyses. Postmenopausal osteoporosis was modelled by surgical ovariectomy. Osteoclast
development and function, gene expression and PLCc2 phosphorylation were tested on in vitro osteoclast and
macrophage cultures.

Results PLCc2) ⁄ ) mice had significantly higher trabecular bone mass under basal conditions than wild-type
mice. PLCc2 was required for in vitro development and resorptive function of osteoclasts, but not for upregula-
tion of osteoclast-specific gene expression. PLCc2 was phosphorylated in a Src-family-dependent manner upon
macrophage adhesion but not upon stimulation by M-CSF or RANKL. Surprisingly, ovariectomy-induced bone
resorption in PLCc2) ⁄ ) mice was similar to, or even more robust than, that in wild-type animals.

Conclusions Our results indicate that PLCc2 participates in bone resorption under basal conditions, likely
because of its role in adhesion receptor signalling during osteoclast development. In contrast, PLCc2 does not
appear to play a major role in ovariectomy-induced bone loss. These results suggest that basal and oestrogen
deficiency–induced bone resorption utilizes different signalling pathways and that PLCc2 may not be a suitable
therapeutic target in postmenopausal osteoporosis.
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Introduction

While osteoclasts are important for normal bone turnover, they

also contribute to pathological bone loss during osteoporosis,

rheumatoid arthritis or osteolytic bone metastases [1–3]. How-

ever, it is incompletely understood how osteoclasts contribute

to normal and pathological bone resorption and whether they

utilize similar intracellular signalling machineries during the

two processes.

Osteoclasts are highly specialized phagocytic cells of haemat-

opoietic origin [4]. They develop by an initial macrophage-like

differentiation, followed by reprogramming to the osteoclast

lineage and fusion of preosteoclasts to mature multinucleated

osteoclasts [1,4]. These processes are directed by the M-CSF and

the osteoblast-derived RANK ligand (RANKL) cytokines.

A number of recent studies have indicated similar compo-

nents of osteoclast biology and immune mechanisms, leading

to the emergence of the new field of osteoimmunology [5].

Those similarities include activation by closely related cyto-

kines [5–7], shared use of transcription factors [5,8,9] and the
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role of immunoreceptor-like signalling pathways (such as Syk

activation by immunoreceptor-associated adapters) in

osteoclast development [10–14]. The similarity between bone

and immune cells is further supported by the similar compo-

nents used by neutrophil, macrophage and osteoclast signalling

and in vivo inflammatory processes [15–19].

Phospholipase Cc (PLCc) proteins link tyrosine kinase-cou-

pled receptors to Ca2+ signalling and PKC activation [20]. While

the PLCc1 isoform is ubiquitously expressed and is required

for embryonic development [21,22], PLCc2 is primarily present

in haematopoietic lineage cells and its absence triggers defects

in haematopoietic lineage cells [23–28]. Most of those pheno-

types are also shared with Syk) ⁄ ) mice or mice with genetic

defects of immunoreceptor signalling molecules [15,19,29,30].

PLCc2 is also activated downstream of the immunoreceptor

signalling adapters DAP12 and the Fc-receptor c-chain (FcRc)

in osteoclast precursors while the downstream activation of the

NFATc1 transcription factor is mediated by Ca2+ signalling

through tyrosine phosphorylation pathways [11,31]. The over-

all similarity between immunoreceptor and PLCc2-mediated

signalling pathways suggests a possible role for PLCc2 in

osteoclast biology.

The above results prompted us to test the role of PLCc2 in

osteoclast development and function, as well as in in vivo bone

homeostasis under normal and pathological conditions. Our

results indicate that PLCc2 plays an important role in basal

bone resorption, likely due to its role in later phases of

osteoclast development. Surprisingly, however, PLCc2 does

not play a major role in ovariectomy-induced bone loss.

Materials and methods

Animals
Heterozygous mice carrying a deleted allele of the PLCc2-

encoding gene (Plcg2tm1Jni, referred to as PLCc2)) [23] were

obtained from James N. Ihle (St. Jude Children’s Research

Hospital, Memphis, TN, USA) and has been backcrossed to the

C57BL ⁄ 6 genetic background for more than 10 generations.

Because of the limited fertility of homozygous PLCc2) ⁄ ) mice,

the mutation was maintained in heterozygous form as

described [26].

For in vivo experiments, PLCc2+ ⁄ + or PLCc2+ ⁄ ) mice of

identical age and sex (mostly littermates) from the same colony

were used as controls. For in vitro experiments, either PLCc2-

sufficient mice from the PLCc2 breeding colony or C57BL ⁄ 6
mice purchased from the Hungarian National Institute of

Oncology (Budapest, Hungary) were used as controls. Because

of the limited availability of PLCc2) ⁄ ) animals, some of the in

vitro experiments were performed on cells from PLCc2) ⁄ ) (and

appropriate control) bone marrow chimeras generated and

tested as described [26]. No difference between the different

sources of mice or bone marrow cells has been observed (not

shown).

Mice were kept in individually sterile ventilated cages (Tec-

niplast, Buguggiate, Italy) in a conventional facility. All animal

experiments were approved by the Semmelweis University

Animal Experimentation Review Board.

Ovariectomy
To test oestrogen deficiency–induced bone loss, wild-type

and PLCc2) ⁄ ) females at 8 weeks of age were anesthetized

with ketamine and medetomidine and subjected to surgical

ovariectomy or sham operation. Six weeks after the operation,

the mice were sacrificed and their femurs or tibias were

analysed.

Micro-CT and histomorphometry
Bone architecture under basal conditions was tested on age-

matched wild-type and PLCc2) ⁄ ) male mice at 8–10 weeks of

age. Ovariectomy-induced bone loss was tested at 14 weeks of

age on wild-type and PLCc2) ⁄ ) females.

Micro-CT studies were performed on the distal metaphysis

of the femurs stored in PBS containing 0Æ1% Na-azide. Samples

were scanned on a SkyScan 1172 (SkyScan, Kontich, Belgium)

micro-CT apparatus using a 50 kV and 200 lA X-ray source

with 0Æ5-mm aluminium filter, and a rotation step of 0Æ5� with

frame averaging turned on, resulting in an isometric voxel size

of 4Æ5 lm. Three-dimensional images were reconstituted and

analysed using the NRecon and CT-Analyser software (both

from SkyScan). For quantitative analysis, 400 horizontal sec-

tions starting 50 sections above the distal growth plate were

selected, and the boundaries of trabecular area were selected

manually a few voxels away from the endocortical surface [32].

The density threshold for bone tissue was set manually by an

experienced investigator. For graphical presentation, the two-

dimensional representation of a horizontal section 250 sections

above the distal growth plate, as well as the three-dimensional

reconstitution of an axial cylinder of 700 lm diameter, expand-

ing from 150 to 450 sections above the distal growth plate has

been prepared.

Histomorphometry studies were performed on the proximal

metaphysis of the tibias. After sacrificing the mice, the bones

were placed in 70% ethanol, then fixed overnight in 4%

formalin and embedded undecalcified in methylmetacrylate

(Technovit; Heraeus Kulzer, Wehrheim, Germany). After

polymerization, 3- to 4-lm sections were cut with a Jung

micrometer (Jung, Heidelberg, Germany) and deplastinated in

methoxymethylmetacrylate (Merck, Darmstadt, Germany).

Sections were stained with von Kossa and Goldner stains. Bone

histomorphometry was performed using a microscope (Nikon,

Tokyo, Japan) equipped with a video camera and digital analy-

sis system (OsteoMeasure; OsteoMetrics, Decatur, GA, USA).
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Histomorphometry parameters were measured according to

international standards [33] as described [34].

In vitro cultures, resorption assays and flow
cytometry
Suspensions of bone marrow cells were cultured for 48 h in

a-MEM (Invitrogen, Carlsbad, CA, USA) in the presence of

10 ng ⁄ mL recombinant mouse M-CSF (Peprotech, Rocky Hill,

NJ, USA). Nonadherent cells (osteoclast ⁄ macrophage precur-

sors) were then plated at 0Æ5 million per cm2 and cultured in

the presence of 20 or 50 ng ⁄ mL mouse M-CSF or mouse

RANKL (Peprotech) with media changes and replacement of

the cytokines every 2–3 days. Cellular morphology and tar-

trate-resistant acid phosphatase (TRAP) expression were

determined after 3–5 days of culture in 24-well tissue culture-

treated plates using a commercial TRAP staining kit (Sigma,

St. Louis, MO, USA). For in vitro resorption assays, osteoclast

precursors were plated on BD BioCoat Osteologic slides (BD

Biosciences, Bedford, MA, USA), cultured in the presence of

M-CSF and RANKL for 10–14 days and processed according

to the manufacturer’s instructions. Cultures were observed

and imaged using a Leica Microsystems (Wetzlar, Germany)

DMI6000B inverted microscope. The number of osteoclasts

(i.e. TRAP-positive cells with 3 or more nuclei) was counted

manually, while the percentage of resorbed area was deter-

mined using the IMAGEJ software (NIH, Bethesda, MD, USA).

Macrophages were generated by culturing osteoclast ⁄
macrophage precursors in the presence of M-CSF but not

RANKL. M-CSF was supplied in the form of purified protein

(parallel macrophage and osteoclast studies) or as a 10%

conditioned medium from CMG14-12 cells [35] (biochemical

studies). Expression of the F4 ⁄ 80 macrophage differentiation

antigen was tested as described [19].

Analysis of gene expression
Osteoclast-specific gene expression was tested using quantita-

tive real-time PCR analysis [36] from wild-type or PLCc2) ⁄ )

cultures generated in the indicated periods of time using the

indicated cytokine concentrations. Total RNA was then iso-

lated from the cells with Trizol reagent (Invitrogen). Reverse

transcription was performed at 37 �C for 120 min from 100 ng

total RNA using the High Capacity cDNA Archive Kit

(Applied Biosystems, Foster City, CA, USA). Quantitative real-

time PCRs were performed in triplicates with a control reaction

containing no reverse transcriptase on an ABI PRISM 7900

(Applied Biosystems) equipment with 40 cycles at 94 �C for

12 s and 60 �C for 60 s using Applied Biosystems Taqman

Gene Expression Assay kits. We tested the expression of the

mouse Acp5 (TRAP; Taqman Mm00475698_m1), Calcr

(Calcitonin receptor; Mm00432271_m1), Ctsk (cathepsin K;

Mm00484039_m1), Fos (c-Fos; Mm00487425_m1), Nfatc1

(NFATc1; Mm00479445_m1), Oscar (OSCAR; Mm00558665_

m1) and Tm7sf4 (DC-STAMP; Mm04209235_m1) genes and

normalized it to the expression of the housekeeping gene

Gapdh (GAPDH; Mm99999915_g1). The comparative Ct method

was used to quantify transcripts.

Biochemical and signalling studies
PLCc2 expression was determined from Triton X-100-soluble

whole osteoclast or macrophage lysates as described [26].

For signalling studies, macrophages were cultured for

5–8 days in bacterial dishes, suspended with 5 mM EDTA and

serum starved for 6 h. When indicated, the cells were then

incubated with 10 lM PP2 (EMD Biosciences, Darmstadt,

Germany) for 8 min. The cells were stimulated with 50 ng ⁄ mL

M-CSF or 50 ng ⁄ mL RANKL in suspension or were plated on

6-cm tissue culture-treated dishes. The reaction was stopped

after 30 min at 37 �C, and cell lysates were prepared as

described [26]. PLCc2 was precipitated using the Q-20 PLCc2

antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA)

and captured using a 1 : 1 mixture of Protein A Sepharose

(Zymed, South San Francisco, CA, USA) and Protein G Aga-

rose (Invitrogen). Whole-cell lysates or PLCc2 immunoprecipi-

tates were immunoblotted with phosphorylation-specific

antibodies (from Cell Signaling Technology, Danvers, MA)

against PLCc2 (pTyr 759; #3874), ERK (#9101) or the p38 MAP

kinase (#9211); nonphospho-specific antibodies against PLCc2

(Q-20; Santa Cruz), ERK1 ⁄ 2 (combination of C-16 (ERK1) and

C-14 (ERK2) from Santa Cruz), p38 MAP kinase (C-20; Santa

Cruz), IjBa (#9242; Cell Signaling) or b-actin (AC-74; Sigma);

or antibodies against phosphotyrosine (clone 4G10; Millipore,

Billerica, MA, USA). Signal intensity was developed using sec-

ondary antibodies and ECL reagents from GE Healthcare

(Chalfont St. Giles, UK).

Statistical analysis
Experiments were performed at the indicated times with

comparable results. Statistical analyses were performed using

Student’s unpaired two-population t-test with unequal

variance or by two-way ANOVA. Analysis of the interaction

between the effects of genotypes and surgical treatments was

performed using Tukey’s post hoc test. P values below 0Æ05

were considered statistically significant.

Results

micro-CT and histomorphometric analysis of
wild-type and PLCc2) ⁄ ) animals
We first analysed the composition of trabecular bone of wild-

type and PLCc2) ⁄ ) male mice using micro-CT analysis of the

distal metaphysis of the femurs. Significantly more trabeculae

were visible in PLCc2) ⁄ ) animals than in the wild-type mice
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both in raw micro-CT slices (Fig. 1a) and in three-dimensional

reconstitution images of an axial cylindrical region (Fig. 1b).

Quantification of the entire three-dimensional reconstitution

image (Fig. 1c) revealed a significant increase in the per cent

bone volume (BV ⁄ TV) of PLCc2) ⁄ ) animals (P = 0Æ011; n = 5),

which was primarily because of increased trabecular number

rather than increased thickness of the individual trabeculae

(Fig. 1c).

We also performed histomorphometric analysis of the trabec-

ular bone of the proximal tibia of male mice. Those studies con-

firmed an increased relative bone volume (BV ⁄ TV; P = 0Æ0012;

n = 4) and trabecular number, but not trabecular thickness is

PLCc2) ⁄ ) animals (Fig. 1d). In addition, a significantly lower

number of osteoclasts was seen in PLCc2) ⁄ ) bones while the

number of osteoblasts was not affected (Fig. 1e). Taken

together, PLCc2) ⁄ ) animals have increased trabecular bone

volume likely due to an osteoclast defect.

PLCc2 is required for in vitro osteoclast development
To test the role of PLCc2 in osteoclasts, we have cultured wild-

type and PLCc2) ⁄ ) bone marrow cells under osteoclastogenic

conditions in vitro. As shown in the TRAP-stained images in

Fig. 2a and their quantification in Fig. 2b, 20 ng ⁄ mL M-CSF and

20 ng ⁄ mL RANKL induced significant osteoclast development

from wild-type but not from PLCc2) ⁄ ) bone marrow cells. This

defect could not be overcome by increasing the concentration of

M-CSF, RANKL or both to 50 ng ⁄ mL (Figs 2a,b). However, both

wild-type and PLCc2) ⁄ ) cultures consistently stained positive

for TRAP (Fig. 2c), and the percentage of TRAP-positive cells

among all mononuclear cells was very similar in the two

(a) (b)

(e)(c)

(d)

Figure 1 Micro-CT and histomorphometric analysis of intact PLCc2) ⁄ ) mice. (a–b) Representative micro-CT sections (a) and three-
dimensional reconstitution (b) of the trabecular area of the distal femoral metaphysis of age-matched wild-type (WT) and PLCc2) ⁄ )

male mice. Distal regions are shown to the lower right in panel b. (c,d) Quantitative micro-CT (c) and histomorphometric (d) analysis
of the trabecular bone architecture. (e) Histomorphometric analysis of the number of osteoclasts (OC) or osteoblasts (OB) attached
to the trabecular bone surface. Data were obtained from five (a–c) or four (d,e) mice per group at 8–10 weeks of age. The analyses
were performed on the distal metaphysis of the femurs (a–c) or the proximal metaphysis of the tibias (d,e). Error bars represent
SEM. *P < 0Æ05; **P < 0Æ01; ***P < 0Æ002; n.s., not significant; BV ⁄ TV, per cent bone volume (bone volume ⁄ total volume).
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genotypes (30-35% at 20 ng ⁄ mL M-CSF + 20 ng ⁄ mL RANKL

and 40–45% at 50 ng ⁄ mL M-CSF and 50 ng ⁄ mL RANKL, irre-

spective of the genotype of the cells). Taken together, PLCc2 is

required for the in vitro development of mature multinucleated

osteoclasts in the presence of M-CSF and RANKL but likely not

for the initial steps of preosteoclast differentiation.

PLCc2 is required for in vitro bone resorption
We next tested the effect of PLCc2 deficiency on osteoclast-

mediated bone resorption by culturing bone marrow cells on an

artificial hydroxyapatite layer. As shown in Fig. 3, wild-type

cells cultured in the presence of 20 ng ⁄ mL M-CSF and

20 ng ⁄ mL RANKL had a moderate resorptive capacity that was

strongly increased by increasing the concentration of both cyto-

kines to 50 ng ⁄ mL. In contrast, practically, no resorption could

be observed in PLCc2) ⁄ ) cultures at either cytokine

concentration. Therefore, PLCc2 is also required for osteoclast-

mediated bone resorption, likely reflecting the previously

mentioned osteoclast developmental defect (Fig. 2).

PLCc2 is not required for macrophage differentiation
or expression of osteoclast-specific genes
Our next aim was to address whether PLCc2 is involved in an

earlier or a later phase of osteoclast differentiation. Because we

were able to obtain normal numbers of apparently normal

macrophages from PLCc2) ⁄ ) bone marrow cells (Fig. 2c and

data not shown) and those macrophages expressed normal

levels of the macrophage differentiation marker F4 ⁄ 80 (Fig. 4a),

it is unlikely that PLCc2 is required for the first steps of general

myeloid cell differentiation.

We next tested the time course of osteoclast-specific gene

expression in in vitro cultures by quantitative RT-PCR. As

(a)

(b) (c)

Figure 2 PLCc2 is required for in vitro osteoclast development. (a) Representative TRAP-stained images of wild-type (WT) and
PLCc2) ⁄ ) bone marrow cells cultured in the presence of the indicated concentrations of recombinant murine M-CSF and RANKL for
4 days. (b) Number of multinucleated osteoclasts (TRAP-positive cells with 3 or more nuclei) in cultures of WT and PLCc2) ⁄ ) bone
marrow cells treated with the indicated concentrations of M-CSF and RANKL for 4 days. (c) Enlarged view of TRAP-stained
osteoclast and macrophage cultures generated in the presence of 20 ng ⁄ mL M-CSF with (osteoclasts) or without (macrophages)
20 ng ⁄ mL RANKL for 4 days. Results were obtained from 15 (a,b) or 7 (c) independent experiments per group. Error bars represent
SEM. n. d., not detected.
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shown in Fig. 4b, the expression of the Acp5 (encoding for

TRAP), Calcr (calcitonin receptor), Ctsk (cathepsin K), Fos

(c-Fos), Nfatc1 (NFATc1), Oscar (OSCAR) and Tm7sf4 (DC-

STAMP) genes was strongly increased during osteoclast differ-

entiation, but none of these genes showed increased expression

in parallel macrophage samples. The genetic deficiency of

PLCc2 did not induce any major reduction in osteoclast-spe-

cific gene expression, although some partial decrease in

expression could be observed, particularly in the case of Calcr

(Fig. 4b). Most importantly, the expressions of the genes

encoding for the early maturation marker TRAP (Acp5), the

most plausible PLCc2 effector NFATc1 (Nfatc1) [11,31] and of

DC-STAMP (Tm7sf4), a critical player of the preosteoclast

fusion machinery [37,38], were all upregulated normally in

PLCc2) ⁄ ) cultures (Fig. 4b). These results indicate that PLCc2

is mostly dispensable for initiation of osteoclast-specific gene

expression.

Biochemical characterization of the PLCc2-mediated
osteoclast signalling pathway
Next, we aimed at the biochemical characterization of PLCc2

activation in osteoclasts. We first tested the presence of PLCc2

in parallel macrophage and osteoclast cultures and found that

PLCc2 was expressed at comparable levels in wild-type macro-

phages and osteoclasts but, as expected, not in PLCc2) ⁄ ) cells

(Fig. 5a).

Osteoclast development is triggered by three major extracel-

lular signals: M-CSF, RANKL and adhesive interactions with

the environment (e.g. with tissue culture plastic surface).

We next tested which of these three signals trigger PLCc2 acti-

vation, using wild-type macrophages stimulated with M-CSF

or RANKL in suspension (which was required to avoid parallel

engagement of adhesion receptors), or plated on a tissue culture

plastic surface. Both an immunoprecipitation approach

followed by immunoblotting with anti-phosphotyrosine

antibodies (Fig. 5b) and a direct immunoblotting using

phospho-specific PLCc2 antibodies (Fig. 5c) revealed PLCc2

phosphorylation upon adhesion of macrophages but not upon

M-CSF or RANKL stimulation in suspension. Additional

attempts with M-CSF or RANKL stimulation for various peri-

ods of time or using various cytokine concentrations ranging

from 10 to 100 ng ⁄ mL did not reveal a consistent PLCc2 phos-

phorylation in suspension either (not shown). On the other

hand, M-CSF-induced ERK phosphorylation and RANKL-

induced p38 MAP kinase phosphorylation and NFjB activation

(degradation of IjBa) could readily be observed under these

conditions (Fig. 5c), indicating intact basic M-CSF and RANKL

signalling in suspension. Therefore, PLCc2 appears to be acti-

vated by adhesive interactions rather than by stimulation with

M-CSF or RANKL cytokines.

We have also tested the role of Src-family kinases in PLCc2

phosphorylation. As shown in Fig. 5d, pretreatment of macro-

phages with the Src-family inhibitor PP2 completely abrogated

the PLCc2 phosphorylation response, indicating that the

adhesion-induced PLCc2 activation requires members of the

Src kinase family.

PLCc2) ⁄ ) mice show normal ovariectomy-induced
bone resorption
Because osteoclast-mediated bone resorption contributes to

postmenopausal osteoporosis [39], we hypothesized that PLCc2

(a)

(b)

Figure 3 PLCc2 is required for in vitro resorptive activity of
osteoclasts. (a) Representative images of resorption of an
artificial hydroxyapatite layer in wild-type (WT) and PLCc2) ⁄ )

osteoclast cultures. Bone marrow cells were cultured on BD
BioCoat Osteologic Plates in the presence of the indicated con-
centrations of M-CSF and RANKL for 14 days. (b) Quantification
of the in vitro resorptive activity of WT and PLCc2) ⁄ ) osteoclast
cultures treated with the indicated concentrations of cytokines.
Results were obtained from 3 to 7 independent experiments
per group. Error bars represent SEM. n.d., not detected.
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may also play a role in oestrogen deficiency–induced bone loss.

That possibility was tested by subjecting wild-type and

PLCc2) ⁄ ) animals to surgical ovariectomy, followed by

micro-CT and histomorphometric analysis 6 weeks later. Rep-

resentative raw micro-CT sections (Fig. 6a), three-dimensional

reconstitution images (Fig. 6b) and quantitative micro-CT

(b)(a)

Figure 4 Normal macrophage development and osteoclast-specific gene expression. (a) Flow cytometric analysis of the expres-
sion of the F4 ⁄ 80 macrophage differentiation marker on wild-type (WT) and PLCc2) ⁄ ) macrophages generated by culturing bone
marrow cells in the presence of recombinant murine M-CSF. Curves of isotype control-stained cells show non-specific labelling.
(b) Analysis of the expression of osteoclast-specific genes in WT and PLCc2) ⁄ ) osteoclast (OC) and macrophage (MU) cultures. WT
and PLCc2) ⁄ ) bone marrow cells were cultured in the presence of 50 ng ⁄ mL with (OC) or without (MU) 50 ng ⁄ mL RANKL for the
indicated period of time, and then the expression of the Acp5 (TRAP), Calcr (Calcitonin receptor), Ctsk (Cathepsin K), Fos (c-Fos),
Nfatc1 (NFATc1), Oscar (OSCAR) and Tm7sf4 (DC-STAMP) genes was determined using quantitative RT-PCR. The results shown
were obtained from 3 to 6 independent experiments per group. Error bars represent SEM.

(a) (b) (c)

(d)

Figure 5 Cellular adhesion triggers PLCc2 phosphorylation. (a) Expression of PLCc2 in macrophages (MU) and osteoclasts (OC).
Wild-type (WT) and PLCc2) ⁄ ) bone marrow cells were cultured in the presence of 50 ng ⁄ mL M-CSF with (OC) or without (MU)
50 ng ⁄ mL RANKL for 4 days, followed by preparation of whole-cell lysates (WCL) and immunoblotting for PLCc2 and b-actin. B-C,
Stimulus-induced phosphorylation of PLCc2. Wild-type macrophages were treated with 50 ng ⁄ mL M-CSF, 50 ng ⁄ mL RANKL or kept
unstimulated in suspension, or they were plated on tissue culture-treated plastic dishes (Adh). After 30 min of incubation, cell was
lysed and processed for immunoprecipitation (IP) of PLCc2 followed by immunoblotting using anti-phosphotyrosine (PY) antibod-
ies, (b) or WCL were immunoblotted using phosphorylation-specific antibodies against ERK, the p38 MAP kinase (p38) and PLCc2 or
nonphospho-specific antibodies against IjBa (c). Immunoblotting for ERK, p38 and PLCc2 served as loading control. (d) Role of
Src-family kinases in PLCc2 phosphorylation. Wild-type macrophages were pretreated in the presence or absence of 10 lM PP2 and
then stimulated and their PLCc2 phosphorylation tested as in panel b. Results shown represent 3–5 independent experiments with
similar results.
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analyses (Fig. 6c) indicated that, similar to intact male animals

(Fig. 1), sham-operated PLCc2) ⁄ ) females also had increased

trabecular bone density, which was reflected in a nearly two-

fold increase in relative bone volume (BV ⁄ TV; P = 0Æ00031;

n = 7 (wild type) vs. 4 (PLCc2) ⁄ ))). As expected, surgical ovari-

ectomy led to a significant reduction in the per cent bone

volume (BV ⁄ TV) of wild-type mice (P = 0Æ025; n = 7). Contrary

to our expectations, however, the per cent bone volume of

PLCc2) ⁄ ) animals was also significantly reduced (P = 0Æ00023;

n = 4) and that reduction was even higher in PLCc2) ⁄ ) mice

than in wild-type animals both in terms of absolute reduction

in BV ⁄ TV values (4Æ1 vs. 1Æ6 percentage points, respectively)

and in percentage of the BV ⁄ TV values of the sham-operated

control animals (50% vs. 36%, respectively). The difference of

the effect of ovariectomy on wild-type and PLCc2) ⁄ ) animals

(interaction of the genotypes and surgical procedures) proved

to be statistically significant (P = 0Æ0090). Importantly, while the

BV ⁄ TV values of sham-operated wild-type and PLCc2) ⁄ )

animals were statistically highly significant (P = 0Æ00025), there

was no significant difference between the two genotypes after

the ovariectomy procedure (P = 0Æ25; n = 7 (wild type) vs. 4

(PLCc2) ⁄ ))). Similar differences could be observed in the tra-

becular numbers, whereas the trabecular thickness remained

unaffected by the different genotypes and surgical procedures

(Fig. 6c).

The above-mentioned findings were also confirmed by

histomorphometric analysis of ovariectomy-induced bone loss

in the proximal tibia. As shown in Fig. 6d, that analysis

confirmed the increased per cent bone volume (BV ⁄ TV) in

sham-operated PLCc2) ⁄ ) animals (P = 0Æ0010; n = 3) and a

reduction in per cent bone volume in ovariectomized wild-type

mice (P = 0Æ038; n = 3). Importantly, the ovariectomy procedure

induced a significantly more pronounced reduction in per cent

bone volume in PLCc2) ⁄ ) mice than in wild-type animals, both

(a) (c)

(d)

(e)

(b)

Figure 6 PLCc2 is not required for ovariectomy-induced bone resorption. (a,b) Representative micro-CT sections (a) and three-
dimensional reconstitution (b) of the trabecular area of the distal metaphysis of the femur of wild-type (WT) and PLCc2) ⁄ ) female
mice subjected to surgical ovariectomy (OVX) or a sham operation. Distal regions are shown to the lower right in panel b. (c,d)
Quantitative micro-CT (c) or histomorphometric (d) analysis of the trabecular bone architecture of ovariectomized or sham-operated
mice of the indicated genotypes. (e) Histomorphometric analysis of the number of osteoclasts (OC) or osteoblasts (OB) attached to
the trabecular bone surface. Data were obtained from 7 (WT) or 4 (PLCc2) ⁄ )) mice per group (a–c) or from three mice per group
(d,e). Surgical operation was performed at 8 weeks of age followed by an additional 6 weeks before the mice were sacrificed and
their bones were removed for analysis. Error bars represent SEM of the indicated number of animals. *P < 0Æ05; **P < 0Æ01;
***P < 0Æ002; ****P < 0Æ0004; n.s., not significant; BV ⁄ TV, per cent bone volume (bone volume ⁄ total volume).
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in terms of absolute reduction in BV ⁄ TV values (9Æ9 vs. 4Æ3
percentage points, respectively) and in per cent of the BV ⁄ TV

values of the sham-operated control animals (38% vs. 24%,

respectively). The difference of the effect of ovariectomy on

wild-type and PLCc2) ⁄ ) animals (interaction of the genotypes

and surgical procedures) proved again to be statistically

significant (P = 0Æ013). Similar to the micro-CT data (Fig. 6a),

while the BV ⁄ TV values of sham-operated wild-type and

PLCc2) ⁄ ) animals were statistically highly significant

(P = 0Æ0010), that difference faded away after the ovariectomy

procedure (P = 0Æ24; n = 3). A similar picture was seen during

the analysis of trabecular numbers, whereas the trabecular

thickness remained unaffected by the different genotypes and

surgical procedures (Fig. 6d).

Additional studies testing the number of osteoclasts and

osteoblasts attached to the bone surface indicated that although

the number of osteoclasts was significantly lower in the sham-

operated PLCc2) ⁄ ) mice than in the wild-type ones (3Æ0 ± 0Æ1
vs. 1Æ4 ± 0Æ5 per mm, respectively; P = 0Æ0036; n = 3), the num-

ber of osteoclasts was strongly increased and reached a compa-

rable, though, still significantly different level (6Æ3 ± 0Æ4 vs.

5Æ0 ± 0Æ4 per mm, respectively; P = 0Æ010; n = 3) in the two

genotypes after the ovariectomy procedure (Fig. 6e). The differ-

ence of the effect of ovariectomy on wild-type and PLCc2) ⁄ )

animals (interaction of the genotypes and surgical procedures)

did not prove to be statistically significant (P = 0Æ56; n = 3),

indicating that PLCc2) ⁄ ) animals were able to upregulate

osteoclast numbers upon oestrogen deficiency normally.

Analysis of the number of osteoblasts did not find any signifi-

cant difference between any of the groups tested (Fig. 6e).

Taken together, these results suggest that ovariectomized

PLCc2) ⁄ ) animals are capable of reducing their bone mass to

levels comparable to those seen in similarly treated wild-type

animals, likely because of similar oestrogen deficiency–induced

increase in osteoclast numbers in the two genotypes.

Discussion

In the first part of this study, we showed that PLCc2) ⁄ ) mice

have increased basal bone density, likely due to reduced in vivo

osteoclast number reflecting the role of PLCc2 in a later phase of

osteoclast development. These results raised the possibility that

PLCc2 may also participate in pathological bone resorption,

such as oestrogen deficiency–induced osteoporosis. Much to

our surprise, however, PLCc2) ⁄ ) mice showed similar, or even

more pronounced, ovariectomy-induced bone resorption than

their wild-type counterparts. Therefore, PLCc2 does not appear

to be required for oestrogen deficiency–induced bone loss.

The experiments presented in this paper (part of which were

published in an abstract form before [40]) were initiated based

on our prior experiments showing defective osteoclast develop-

ment and in vivo bone resorption in mice lacking immunorecep-

tor signalling adapter molecules or the Syk tyrosine kinase [10],

as well as the similarity between various Syk) ⁄ ) and PLCc2) ⁄ )

phenotypes [15,19,23–26,41]. However, two other groups have

also independently reported in vitro osteoclast development

and in vivo bone resorption defects in PLCc2) ⁄ ) mice [42,43].

Although all three reports conclude that PLCc2 is required for

in vitro osteoclast development and basal bone resorption in

vivo, they provide different explanations for those observations.

Mao et al. [42] and Chen et al. [43] reported dramatically

reduced expression of osteoclast-specific genes (such as those

encoding TRAP, NFATc1, cathepsin K or the calcitonin recep-

tor) in PLCc2) ⁄ ) cultures, suggesting that PLCc2 is required for

an early step of osteoclast differentiation. A plausible explana-

tion was that a PLCc2-induced intracellular Ca2+ signal trig-

gered activation of NFATc1, a Ca2+-sensitive master regulator

of osteoclast-specific gene expression [31]. Surprisingly, our

own more detailed analyses did not reveal any substantial

defect of osteoclast-specific gene expression in PLCc2) ⁄ )

cultures, and the expression of NFATc1 was not at all affected

by the PLCc2 mutation (Fig. 4b). Based on the time course of

the expression of those genes and their low expression in

parallel macrophage samples (Fig. 4b), it is unlikely that our

results are attributed to non-specific amplification artefacts. It is

also unlikely that our results are owing to inappropriate

selection of the cytokine concentrations used because we did

not observe reduced gene expression levels in PLCc2) ⁄ )

cultures even when the concentration of both M-CSF and

RANKL was reduced to 20 ng ⁄ mL, whereas the PLCc2) ⁄ )

mutation caused severe osteoclast developmental defect even

when the concentration of both cytokines was increased to

100 ng ⁄ mL (not shown). In addition, we consistently observed

a large percentage of TRAP-positive mononuclear cells in

PLCc2) ⁄ ) osteoclast cultures (Fig. 2c), and such cells were also

present in the PLCc2) ⁄ ) osteoclast cultures shown by Mao et al.

[42] and Chen et al. [43]. Taken together, osteoclast-specific

gene expression is not (or not completely) blocked in PLCc2) ⁄ )

cultures, necessitating alternative explanations for the

PLCc2) ⁄ ) osteoclast phenotype.

Another possible explanation for the PLCc2) ⁄ ) osteoclast

phenotype could be the participation of PLCc2 in preosteoclast

fusion, a process mediated in part by the DC-STAMP molecule

[37,38]. While our gene expression studies (Fig. 4b) did not

reveal any major role for PLCc2 in RANKL-induced upregula-

tion of DC-STAMP, it has yet to be tested whether PLCc2 is

involved in signal transduction by DC-STAMP or another

preosteoclast fusion receptor.

Osteoclast development requires a complex interplay

between signals from M-CSF, RANKL and ligation of adhesion

receptors [44]. Because RANKL stimulation of adherent

bone marrow-derived macrophages triggered PLCc2
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phosphorylation, Mao et al. [42] and Chen et al. [43] suggested

that PLCc2 is activated downstream of RANK. That conclusion,

however, is confounded by the ligation of both RANK and

adhesion receptors in that assay. In contrast, we did not observe

any PLCc2 phosphorylation upon stimulating wild-type macro-

phages with RANKL (or M-CSF) in suspension, whereas cellu-

lar adhesion consistently triggered robust phosphorylation of

the protein in the absence of any cytokines (Fig. 5b,c). These

results suggest that PLCc2 is primarily involved in adhesion

receptor rather than in RANK signal transduction, a possibility

consistent with the role of PLCc2 in integrin signalling of neu-

trophils [24,26] and its proposed modulatory effect on integrin

signalling in preosteoclasts [45].

The analysis of ovariectomy-induced bone resorption is likely

the most clinically relevant aspect of our study. While the

increased basal bone volume (Fig. 1) and the defective in vitro

osteoclast development and function (Figs 2 and 3) in PLCc2) ⁄ )

mice suggested a role for PLCc2 in pathological bone resorp-

tion, ovariectomy-induced bone loss in PLCc2) ⁄ ) mice was

unexpectedly normal or even more pronounced than in

wild-type animals (Fig. 6). Because this was observed both in

the distal femur and in the proximal tibia and by two

independent approaches (micro-CT and histomorphometry),

we believe that PLCc2 is not a major general component of

oestrogen deficiency–induced bone resorption. However, we

cannot exclude the possibility that ovariectomy-induced bone

resorption at certain sites or under some specific conditions

would be defective in PLCc2) ⁄ ) animals.

It is at present unclear to us how exactly PLCc2) ⁄ ) animals

are able to reduce their bone mass during oestrogen deficiency.

However, the fact that the ovariectomy-induced increase in the

number of osteoclasts was similar in the two genotypes despite

significantly reduced basal number of osteoclasts in PLCc2) ⁄ )

mice (Fig. 6e) suggests the existence of PLCc2-independent

mechanisms triggering oestrogen deficiency–induced osteoclast

development. Whether those are mediated by cell–cell interac-

tions (e.g. with osteoblasts) not present in the in vitro cultures

[10,11], by excessive release of cytokines overcoming osteoclast

developmental defects [46] or by the amplification of PLCc2-

independent signal transduction pathways, should be the

subject of future research.

It has been generally believed that osteoclasts use similar

signal transduction pathways during basal and induced (e.g.

oestrogen deficiency–induced) bone resorption. Therefore, it

has been assumed that the identification of novel osteoclast

signalling molecules may provide suitable targets for the

therapeutic intervention in pathological bone loss, such as

postmenopausal osteoporosis. Our results showing normal

ovariectomy-induced bone loss in PLCc2) ⁄ ) animals indicate

that this may not be the case. Interestingly, a prior study

showed that ovariectomy-induced bone loss in the highly

osteopetrotic DAP12) ⁄ )FcRc) ⁄ ) animals is comparable to, or

even higher than, that in wild-type mice [47]. All these results

suggest differential osteoclast signalling requirements for basal

and oestrogen deficiency–induced bone resorption and indi-

cate that care should be taken when extrapolating findings on

basal bone resorption to pathological conditions. These results

also indicate that limited clinical benefit can be expected

from therapeutic targeting of PLCc2 in postmenopausal

osteoporosis.
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